In Situ and Ex Situ Monitoring of Oxygen Absorption in YBaCoO$_{7+\delta}$

Markus Valkeapää,1,2 Maarit Karpinnen,1,2 Teruki Motohashi,2 Ru-Shi Liu,3 Jin-Ming Chen,1 and Hisao Yamauchi3

1 Helsinki University of Technology TTK, Laboratory of Inorganic and Analytical Chemistry, FI-02015 TTK, Finland
2 Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503
3 Department of Chemistry and Center for Nano Storage Research, National Taiwan University, Taipei 106, Taiwan

(Received August 24, 2007; CL-070907; E-mail: markus.valkeapaa@tkk.fi)

Oxygen absorption in YBaCoO$_{7+\delta}$ was studied by in situ XRD and by XANES spectroscopy. Unit cell of 10.875 × 10.168 × 12.788 Å3 (Pnma) was found for the oxygenated phase. XANES shows that oxygen absorption increases the number of different crystallographic sites for Co.

Recently, an uncommon oxygen absorption/desorption behavior was found for YBaCoO$_{7+\delta}$. The compound absorbs and desorbs oxygen up to δ ≈ 1.5 in a narrow temperature range below 400 °C. Such a large oxygen-content tunability is of great promise in regards to applications related to, e.g., oxygen storage. Crystal structure of the parent YBaCoO$_7$ phase is known, but no unit cell for the oxygen-rich phase has been proposed. The aim of our in situ X-ray diffraction (XRD) study in O$_2$ at elevated temperatures was to observe the formation of the oxygenated phase. For this purpose a sample of YBaCoO$_{7.0}$ was prepared by an EDTA complexation method. Since XANES (X-ray absorption near-edge structure) is sensitive to the local structure and thus complements XRD which gives information on the average structure, we also performed ex situ XANES measurements on the YBaCoO$_{7.0}$ sample and on its oxygen-annealed (350 °C, 5 h) form YBaCoO$_{8.2}$ at Co L- and O K-edges. Oxygen contents were determined by thermogravimetry.

XRD data were collected with a diffractometer (Rigaku RINT-TTR II) equipped with a CuKα rotating anode and a temperature- and atmosphere-controlled chamber (Rigaku SHT-1500). Experimental details of the XANES measurements performed at NSRRC in Taiwan were similar to those in ref 4. The O K-edge spectra recorded by X-ray fluorescence yield mode were corrected for self-absorption effects using the program Athena. The Co L-edge spectra were measured by collecting the sample drain current.

Along with temperature increase, the intake and subsequent release of oxygen1 is accompanied by structural changes, as demonstrated here by the evolution of diffraction patterns in Figure 1. As temperature increases, the changes take place at 300 °C, most notably a shoulder at the right-hand side of 103 reflection, disappearance of 200 reflection, and an apparent shift of 004 reflection. At 350 °C the diffraction pattern consists of broad Bragg reflections and clearly differs from the room-temperature pattern. When the temperature is further increased, at 500 °C the diffraction pattern returns to the original, save for the differences due to thermal expansion. Before and after the heating-and-cooling cycle (i.e., the intake and release of oxygen) the diffraction patterns are essentially the same.

In addition to aforementioned changes in the XRD pattern, several small intensity peaks are observed in patterns collected at 300–400 °C. These are marked with “x” in Figure 2.

Owing to the partial overlap of the high-δ and parent-phase reflections it is not obvious whether the patterns at 300–400 °C originate from a single phase. The overlap, together with the small intensity peaks, leads to a situation where the pattern indexing (DICVOL6) gives several suggestions for the unit cell of the high-δ phase. Two most likely solutions are reported here. Assuming that the oxygen intake is not complete, it is possible that some unreacted parent phase remains at 300–400 °C. This is the situation shown in Figure 2: indexed reflections belong to an orthorhombic (o) unit cell 10.884 × 10.190 ×
of cobalt upon the oxygen intake. Relationship of Cells 1 and 2 to that of YBaCoO$_{7.0}$ is interesting: in both cases a_0 of the high-δ phase is approximately equal to $\sqrt[3]{3a_0}$ of the YBaCoO$_{7.0}$ phase. Upon oxygenation the parent phase is being modified: $a_0 \times b_0 \times c_0 \approx \sqrt[3]{3a_0} \times \approx c_0 \times \approx 2a_0$.

Oxygen K-edge XANES spectra of YBaCoO$_{7.0}$ and YBaCoO$_{8.2}$ are shown in Figure 3 (top). The pre-edge onset position at ≈ 528 eV is the same for both spectra, but the intensity of the pre-edge peak increases as the sample’s oxygen content increases. Absorption feature at the pre-edge is related to Co3d–O2p hybridized orbitals, and its increased intensity indicates oxidation of cobalt (from CoII to CoIII in this case). In addition to the intensity differences at the pre-edge, O K-edge spectrum of YBaCoO$_{8.2}$ has additional absorption peaks (B, C, and D); indicating a mixture of Co–O coordination geometries in the sample, i.e., the local structure of Co is more diversiform in YBaCoO$_{8.2}$ than in YBaCoO$_{7.0}$.

Figure 3 (bottom) shows XANES spectra in the energy range 775–805 eV for the two samples. The spectra display absorption peaks from both Co L-edge and Ba M-edge. For the most part, the spectra overlap but there is a small positive shift in the spectral weight in the case of Co L-edge, whereas the Ba M-edge peak remains almost unchanged upon oxygenation. The shift towards higher energy in the Co L-edge peak indicates increasing oxidation state of cobalt and/or changes in the coordination sphere of Co atoms.

To summarize, we have followed the changes in the XRD patterns of YBaCoO$_{7+\delta}$ during oxygen intake and release. The unit cell of 10.875 \times 10.168 \times 12.788 Å3 in space group $Pnma$ was found for the high-δ phase. We have shown by XANES that the oxygen absorption increases the number of different crystallographic sites for O and Co atoms, i.e., the structure becomes more complicated in terms of Co–O coordination.

The present work was supported by Academy of Finland (Dec. 110433), M. V. thanks Japan Society for the Promotion of Science for FY2004 postdoctoral fellowship.

References
9 J. J. Rehr, R. C. Albers, Rev. Mod. Phys. 2000, 72, 621.