Hole states in oxycarbonate high-T_c superconductor
$(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$ probed by soft X-ray absorption spectroscopy

J.M. Chen a, R.S. Liu b, C. Martin c, F. Letouze c, B. Raveau c

a Synchrotron Radiation Research Center (SRRC), Hsinchu, Taiwan
b Department of Chemistry, National Taiwan University, Taipei, Taiwan
c Laboratoire CRISMAT-ISMRA, Boulevard du Marechal, Caen Cedex, France

Received 5 December 1996; revised manuscript received 10 January 1997

Abstract

We report O K-edge and Cu L$_{2,3}$-edge X-ray-absorption near-edge-structure (XANES) spectra of oxycarbonate $(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$ obtained using a bulk-sensitive X-ray fluorescence yield technique. The prominent features of the O 1s absorption edge in $(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$ compound are three distinct pre-edge peaks at 528.2, 529.3 and 530.5 eV, respectively. We ascribed these pre-edge peaks to excitations of O 1s electrons to predominant O 2p holes located in the CuO$_2$ planes, in the apical oxygen sites, and in the (Ti,Cr)-O planes, respectively. The average number of holes within the in-plane oxygen sites per CuO$_2$ sheet is approximately the same for both the $(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$ and $\text{Tl}_3(\text{CrO}_4)\text{Sr}_3\text{Cu}_4\text{O}_{16}$ systems. Conversely, the average hole content in the apical oxygen sites decreases significantly in $(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$ as compared to $\text{Tl}_3(\text{CrO}_4)\text{Sr}_3\text{Cu}_4\text{O}_{16}$. The reduction of the average hole concentration in the apical oxygen sites is accompanied by the enhanced superconductivity in $(\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_4\text{Cu}_2(\text{CO}_3)\text{O}_7$, indicating that the O 2p holes on the apical oxygen sites play an important role to control the T_c. The behavior of the high-energy shoulders in the Cu L$_{2,3}$-edge absorption spectra coincides with that of the pre-edge peak at 528.2 eV in the O K-edge absorption spectra.

1. Introduction

The insulating oxycarbonate compound Sr_2CuO_2(CO$_3$) was first reported by von Schnering et al. [1]. This compound consists of a block layer [Sr$_2$CO$_3$] and a CuO$_2$ sheet. Thereafter, the successful substitution of carbonate groups for copper in the perovskite structure has produced a large number of new oxycarbonate superconductors, such as, $(\text{Hg}_{0.5}\text{Pb}_{0.2})\text{Sr}_3\text{Cu}_4(\text{CO}_3)\text{O}_7$ [2], $(\text{Tl}_{0.5}\text{Pb}_{0.5})\text{Sr}_3\text{Cu}_4(\text{CO}_3)\text{O}_7$ [3], $(\text{Bi}_{0.5}\text{Hg}_{0.5})\text{Sr}_3\text{Cu}_4(\text{CO}_3)\text{O}_7$ [4], $(\text{Ti}\text{Sr}_{0.5}\text{Ba}_{0.5})$-Cu$_2CO_3O_7$ [5], $\text{Ti}(\text{Sr}_{4-x}\text{Ba}_x)Cu_2$(CO$_3$)O$_7$ [6], $(\text{Hg}_{0.5}\text{Pb}_{0.5})(\text{Sr}_{4-x}\text{Ba}_x)Cu_2$(CO$_3$)O$_7$ [7], $(\text{Ti}_{1-x}\text{Bi}_x)$-Sr$_2Cu_2$(CO$_3$)O$_7$ [8], etc. The crystal structure of those oxycarbonate cuprates has already been reported. As an example, the structure of the oxycarbonate $(\text{Tl},\text{M})\text{Sr}_3\text{Cu}_4(\text{CO}_3)\text{O}_7$ ($\text{M} = \text{Pb}$ or Bi) is built up from the intergrowth of double rock-salt-type layers $\{(\text{Tl},\text{M})\text{O}\}([\text{SrCO}_3]$) and single [SrCuO$_2$] perovskite, linked through single carbonate [SrCO$_3$] layer [3,8]. Thus, its structure can be described as the intergrowth of 1201-type layers $\{(\text{Tl},\text{M})\text{Sr}_3\text{Cu}_4\text{O}_7\}$ with the classical [SrCuO$_2$] (S$_2$CC) units, and is called normal “S$_2$CC-1201” structure. It is re-
markable that the thallium oxycarbonate \((T_{10.8}Pb_{0.2})Sr_4Cu_2(O_3)O_7\) exhibits the highest \(T_c\) of 70 K, although it derives from two nonsuperconductors, \((T_{10.2}Pb_{0.8})Sr_2CuO_5\) [9] and \(Sr_2Cu_2(O_3)\) [10]. A similar phenomenon has been recently experimentally proven for a superconducting oxycarbonate \(Bi_{2}Sr_2CuO_5\) with a \(T_c\) of 30 K [11], which is composed of an intergrowth of the 2201-type superconductor \(Bi_{2}Sr_2CuO_5\) with a \(T_c\) of 22 K [12] and of the nonsuperconducting oxycarbonate \(Sr_2CuO_2(\text{CO}_3)\). There are also the case of the mercury and the thallium-based oxycarbonate \((Hg_{0.3}Pb_{0.7})Sr_4Cu_2(\text{CO}_3)O_7\) [2], \(Hg(Sr_2Ba_2)Cu_2(\text{CO}_3)O_7\) [5], \(Tl(Sr_2Ba_2)Cu_2(\text{CO}_3)O_7\) [6], and \((T_{10.2}Bi_{0.8})Sr_4Cu_2(\text{CO}_3)O_7\) [8], which are the intergrowth of the 1201-type \(Hg\) or \(Tl\) cuprate and the \(Sr_2CuO_2(\text{CO}_3)\) structure. The superconducting transition temperature of these compounds is systematically higher than that of the parent 1201-type cuprates. This shows that the introduction of carbonate layers into the single-thallium-layer compounds, O K-edge X-ray absorption spectrum of 1201-type parent compound with a nominal composition of \((T_{10.75}Cr_{0.25})Sr_2CuO_5\) has also been carried out in this study. The insertion of carbonate layer in \((T_{10.8}Cr_{0.2})Sr_4Cu_2(\text{CO}_3)O_7\) is located in the apical position. It is therefore expected that the hole density in the apical directions may be changed in \((T_{10.8}Cr_{0.2})Sr_4Cu_2(\text{CO}_3)O_7\) as compared to the parent compound \((T_{10.75}Cr_{0.25})Sr_2CuO_5\). However, it should be pointed out that the substitution of \(Cr\) for \(Tl\) in the 1201-type structure results in the formation of an ordered copper oxychromate \(Tl_3(CrO_4)Sr_8Cu_4O_{16}\) with the \(A2mm\) space group and lattice constants \(a = 3.7803\ \text{Å}, \ b = 15.2573\ \text{Å}\) and \(c = 17.6737\ \text{Å}\) [16]. It exhibits a \(T_c\) of 25 K. The study of electronic states near the Fermi level of the oxycarbonate cuprates will give rise to open new vistas to understand the microscopic mechanism of high-\(T_c\) superconductivity in the layered cuprates.

2. Experimental

Details on the preparation of samples were reported elsewhere [15,16]. In brief, high purity powders of \(Tl_3O_3\), \(Cr_2O_3\), \(SrO_2\), \(CuO\), \(Sr_2CuO_3\), and carbonate \(SrCO_3\) were weighed in the appropriate proportions to form a nominal composition of \((T_{10.8}Cr_{0.2})Sr_4Cu_2(\text{CO}_3)O_7\). The powders were mixed in an agate mortar, pressed into bars, put in an alumina crucible, and then sealed in an evacuated quartz ampoule. The tubes were introduced in a hot furnace at 850°C, held for 12 hours, and then quenched to room temperature. The \(Tl_3(CrO_4)Sr_8Cu_4O_{16}\) compounds were prepared by similar procedures but with high post-annealing temperature at 920°C for 6 hours [16]. The purity and crystallinity were checked out by X-ray diffraction (XRD) and electron diffraction (ED) techniques. The superconducting properties were studied as a function of...
temperature using an AC Lakeshore susceptometer with an applied field of 5 G; no demagnetizations were made.

The X-ray absorption measurements were carried out using the 6 m high-energy spherical grating monochromator (HSGM) beamline of the Synchrotron Radiation Research Center (SRRC) in Taiwan. Bulk-sensitive X-ray fluorescence yield spectra with a probing depth of thousands of angstroms were recorded using a microchannel plate (MCP) detector. This MCP detector is composed of a dual set of MCPs with an electrically isolated grid mounted in front of them. For X-ray fluorescence detection, the grid was set to a voltage of 100 V while the front of the MCPs was set to −200 V and the rear to −200 V. The grid bias insured that no positive ions were detected while the MCP bias insured that electrons would not be detected. The MCP detector was located ~2 cm from the sample and oriented parallel to the sample surface. Photons were incident at an angle of 45° with respect to the sample normal. The incident photon intensity \(I_0\) was measured simultaneously by an 80% transmission Ni mesh located after the exit slit of the monochromator. All the measurements were normalized to \(I_0\). The photon energies were calibrated using the known O K-edge and Cu L-edge absorption peaks of the CuO compound. The energy resolution of the monochromator was set to approximately 0.22 and 0.45 eV for the O K-edge and Cu L-edge absorption measurements, respectively.

3. Results and discussion

In Fig. 1 we show the temperature dependence of the AC susceptibility of \((\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_2\text{Cu}_2\text{(CO}_3\text{)}\text{O}_7\). As deduced from Fig. 1, its superconducting transition temperature is 68 K which is one of the highest observed in the oxycarbonate cuprates.

In Figs. 2a and 2b O K-edge X-ray absorption near edge structure (XANES) spectra of \((\text{Tl}_{0.8}\text{Cr}_{0.2})\text{Sr}_2\text{Cu}_2\text{(CO}_3\text{)}\text{O}_7\) and \(\text{Tl}_3\text{(CrO}_4\text{)}\text{Sr}_8\text{Cu}_4\text{O}_{16}\), respectively, are displayed in the energy range of 525–555 eV obtained by a non-surface-sensitive X-ray fluorescence yield detection technique. As noted from Fig. 2, the prominent features in the O 1s absorption spectrum are three discrete pre-edge peaks at 528.2, 529.3 and 530.5 eV, respectively, and a broad band at ~537 eV. The O 1s X-ray absorption spectra in Fig. 2 can be separated into two regions: below and above energy ~532 eV. It has been proven by inverse photoemission experiments that the empty d states of Sr are located at about 5–10 eV above the
Fermi level \[17\]. Thus, excitations of the O 1s electrons to the Sr 4d and Tl 6p empty states hybridized with O 2p states are probably responsible for the high-energy peaks above 535 eV. The pre-edge peaks below 532 eV are attributed to transitions from O 1s electrons to holes with the predominant 2p symmetry on the oxygen sites. The observed multiple pre-edge peaks in Fig. 2 may be related to different binding energies of O 1s levels of nonequivalent oxygen sites. In order to understand the variations in the density of doped O 2p holes per CuO$_2$ sheet, the O K-edge absorption spectra in Fig. 2 have been normalized in the range 535–555 eV according to their ideal oxygen stoichiometry and then divided by the number of CuO$_2$ layers per formula. This provides the absolute intensities of the relevant pre-edge peaks originating from different oxygen sites for the (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$ and Tl$_3$(CrO$_4$)$_4$Sr$_8$Cu$_4$O$_{16}$ compounds.

Based on the crystal structure of (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$ \[15\], there exist several different oxygen sites distributed in the in-plane CuO$_2$ planes, in the apical oxygen sites, and in the (Tl,Cr)-O planes, respectively. The distinct pre-edge features in the O 1s X-ray absorption spectrum originating from different oxygen environments have been found in the related high-\(T_c\) superconductor compounds, such as Tl$_2$Ba$_2$Ca$_2$Cu$_4$O$_{10}$ and Tl$_2$Ba$_2$CaCu$_2$O$_8$. Near the O 1s edge, three pre-edge peaks with maxima at 528.3, 529.4 and 530.6 eV are revealed in the Tl$_2$Ca$_2$Ba$_2$Cu$_4$O$_{10}$ high-\(T_c\) superconductor reported by Krol et al. \[18\]. These peaks are ascribed to core-level excitations of oxygen 1s electrons to empty states originating from different oxygen sites. The low-energy pre-edge peak at 528.3 eV is mainly 2p$_{x,y}$ symmetry from the two-dimensional CuO$_2$ planes, and the higher-energy pre-edge peak at 529.4 has predominantly O 2p$_z$ symmetry from the apical oxygen sites.\[21\]. Moreover, the first pre-edge peak at \(\sim 528.3\) eV in the related high-\(T_c\) superconductors, such as, (Tl$_{0.3}$Pb$_{0.7}$)$_4$Sr$_3$(Cu$_{1-x}$Y$_x$)$_4$O$_{7}$ \[22\] and HgBa$_2$-Ca$_{2-n}$Cu$_{2n+2+\delta}$ \((n = 1-3)\) \[23\], was assigned to O 2p hole states within the CuO$_2$ planes. Therefore, in accord with results from other p-type cuprate superconductors \[14,18,22–24\], the first pre-edge peak at 528.2 eV in the XANES spectrum of (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$ in Fig. 2a was attributable to excitations of O 1s electrons to O 2p holes located in the CuO$_2$ planes. The other pre-edge peaks at 529.3 eV and 530.5 eV in Fig. 2a were ascribed to transitions into O 2p holes in the apical oxygen sites and the (Tl,Cr)-O planes, respectively.

However, another possible final state associated with the transition at 530.5 eV is the upper Hubbard band of the Cu 3d states highly hybridized with the O 2p states. Due to strong on-site correlation on the copper sites in the cuprate compounds, such a band has always been assumed to exist \[25\]. Therefore, the peak at 530.5 eV may be due to a superposition of unoccupied O 2p states originating from the (Tl,Cr)-O layers and the upper Hubbard band related to the CuO$_2$ planes. The peak assignment of the O K-edge XANES spectrum of Tl$_3$(CrO$_4$)$_4$Sr$_8$Cu$_4$O$_{16}$ is similar to that of (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$.

The peaks at \(\sim 532.2\) and \(\sim 533.6\) eV may be due to surface contamination since those peaks exhibit a greater intensity in the surface-sensitive total-electron yield spectra. Existence of surface contamination has been reported by many researchers. It is suggested that these peaks are arisen from absorption of hydrides, water, and CO$_2$ on the surface \[26\].

Figs. 3a and 3b show the pre-edge region of the O K-edge X-ray absorption spectra of (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$ and Tl$_3$(CrO$_4$)$_4$Sr$_8$Cu$_4$O$_{16}$, respectively. As shown, the spectral weight of the low-energy pre-edge peak at 528.2 eV is similar from (Tl$_{0.8}$Cr$_{0.2}$)$_4$Sr$_4$Cu$_2$(CO$_3$)$_7$O$_7$ to Tl$_3$(CrO$_4$)$_4$Sr$_8$Cu$_4$O$_{16}$. This indicates that the average number of holes within the in-plane oxygen sites per CuO$_2$ plane is approximately the same for both systems. Conversely, high-energy pre-edge peak at 529.3 eV originating from the apical oxygen sites decreases significantly in intensity in both systems. It has been demonstrated that the concentration of O 2p holes in the CuO$_2$ planes is strongly correlated with \(T_c\) \[18\]. Also several theories for high-\(T_c\) superconductors suggest that the apical O 2p$_z$ orbital plays a crucial role in superconductivity \[27–30\].
For example, the presence of apical oxygen atoms makes the CuO$_2$ plane easier to dope with holes [30]. In addition, superconductors with pyramidal copper coordination show a very large pressure enhancement of T_c, whereas, in superconductors with no apical oxygen atoms, the pressure effect on T_c is very small [28]. Recently, a clear correlation has been found between the T_c and the Cu bond valence sum due to variation in bonding of the copper ion to the apical oxygen [31]. Similarly, Ohta et al. found a correlation between T_c and the energy difference between apical O 2p$_z$ states and planar O 2p$_{xy}$ states [32]. Grant et al. have recently pointed out the importance of the apical O 2p$_z$ states in determining the nature and dispersion of quasiparticle states of p-type doped cuprates [33]. Also Di Castro et al. have explained the suppression of T_c above a certain dopant concentration by the occupancy of holes on Cu 3d$_{3z^2-r^2}$ and apical O 2p$_z$ hybrids [34]. It should be pointed out that the oxycarbonate (Tl$_{0.8}$Cr$_{0.2}$)Sr$_4$Cu$_2$(CO$_3$)O$_7$ is a superconductor with a T_c of 68 K, while Tl$_3$(CrO$_4$)Sr$_8$Cu$_4$O$_{16}$ exhibits a T_c of 25 K.

As noted from Fig. 3, the significant decrease in the average O 2p hole concentration in the apical oxygen sites in (Tl$_{0.8}$Cr$_{0.2}$)Sr$_4$Cu$_2$(CO$_3$)O$_7$ is accompanied by a substantial increase in T_c. Our data give evidence in support of the hypothesis that holes in apical oxygen sites may have a negative influence on the superconductivity in the layered cuprates. In Figs. 4a and 4b are shown the Cu L$_{23}$-edge X-ray-absorption near-edge-structure X-ray-fluorescence yield spectra of (Tl$_{0.8}$Cr$_{0.2}$)Sr$_4$Cu$_2$(CO$_3$)O$_7$ and Tl$_3$(CrO$_4$)Sr$_8$Cu$_4$O$_{16}$, respectively, in the energy range of 920 to 960 eV. The data have been normalized to the number of CuO$_2$ sheets per formula. For both systems, the strong excitonic peaks at 931.5 eV and 951.3 eV are very close to the L$_{23}$ peaks observed in the Cu L$_{23}$-edge absorption spectrum of CuO and are attributed to transitions from the Cu(2p$_{3/2}$)$_{3d^9}$-O2p6 ground states (formally Cu$^{+2}$) to the Cu(2p$_{3/2}$)$_{3d^{10}}$-O2p6 excited states, where (2p$_{3/2}$)$_{3d^{10}}$ denotes a 2p$_{3/2}$ hole [35]. Two shoulders at the high-energy side of the main peaks, as shown in Figs. 4a and 4b, are assigned to...
excitations of the Cu(2p_{3/2,1/2})^3d^9L ground states (formally Cu^{+3}) to the Cu(2p_{3/2,1/2})^{−1}3d^{10}L excited states, where L denotes the O 2p ligand hole [36]. According to the curve-fitting analyses, the new features are found to center at ~ 933.1 and ~ 952.9 eV, respectively. In addition, the integrated intensity of the high-energy shoulder at ~ 933.1 eV remains approximately unchanged from the (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7 to the Y_{1.3}(CrO_4)Sr_8Cu_4O_{16} samples. Because there is only one type of Cu site in the unit cell of (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7 and Y_{1.3}(CrO_4)Sr_8Cu_4O_{16} compounds (i.e., no Cu-O chains as in YBa_2Cu_3O_{6.8}) these high-energy features in the Cu L_{23}-edge absorption spectra can be obviously characterized as a result of the O 2p hole in the CuO_2 planes. It is noted that the behavior of these high-energy shoulders coincides with that for the pre-edge peak at 528.2 eV in the O K-edge absorption spectra shown in Fig. 2. This gives an evidence to verify the assignment that the pre-edge peak at 528.2 eV originates from the CuO_2 planes.

4. Conclusion

In this study, O K-edge and Cu L_{23}-edge X-ray-absorption near-edge-structure measurements of the (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7 and Y_{1.3}(CrO_4)Sr_8Cu_4O_{16} compounds were performed to search for the hole distributions among different oxygen sites and their role in superconductivity. Near the O ls edge, three distinct pre-edge peaks at 528.2, 529.3 and 530.5 eV, respectively, are clearly revealed. These pre-edge peaks were ascribed to excitations of O 1s electrons to predominant O 2p holes located in the CuO_2 planes, in the apical oxygen sites, and in the (Tl,Cr)-O planes, respectively. The average number of holes within the in-plane oxygen sites per CuO_2 plane is approximately the same for both (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7 and Y_{1.3}(CrO_4)Sr_8Cu_4O_{16} systems. Conversely, average hole content in the apical oxygen sites decreases significantly in (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7 as compared to Y_{1.3}(CrO_4)Sr_8Cu_4O_{16}. The reduction of average O 2p hole concentration in the apical oxygen sites is accompanied by the enhanced superconductivity in (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7. In the Cu L_{23}-edge absorption spectra, high-energy shoulders at ~ 933.1 and ~ 952.9 eV are assigned to the transitions from the Cu(2p_{3/2,1/2})^3d^9L ground states to the Cu(2p_{3/2,1/2})^{−1}3d^{10}L excited states, where L denotes the O 2p ligand hole. The behavior of these shoulders correlates with that of the pre-edge peak at 528.2 eV in the O K-edge absorption spectra. Based on the present X-ray absorption studies, the O 2p holes in the apical oxygen sites play a crucial role in controlling the Tc up to 68 K in (Tl_{0.8}Cr_{0.2})Sr_4Cu_2(CO_3)O_7.

Acknowledgements

We would like to thank all the members of SRRC for their technical support. This research is financially supported by SRRC and National Science Council of the Taiwan under grant numbers NSC 86-2613-M-213-010 and NSC 86-2113-M-002-020.

References

